Segment 9: Coddle Creek Reservoir to I-85 – OPTION 1: Linked Centers

A. Harris Road
B. Odell School Road
C. Barr Road
D. Westside Bypass
E. Macedonia Church Road
F. Trinity Church Road
G. I-85
Segment 1: US 321 to Link Drive –
OPTION 2: Thruway

A. Victory Grove Church Road
B. Lithia Inn Road
C. Country Club Road
D. US 321
E. Salem Church Road
F. Hill Road
G. Railroad
H. NC 27
I. Airport Road
J. Future NC 73 Bypass
K. Link Drive
Segment 2: Link Drive to Reed Creek –
OPTION 2: Thruway

A. Railroad
B. NC 27
C. Airport Road
D. Link Drive
E. Future NC 73 Bypass
F. Camp Creek Road
G. Low Bridge Road
H. Reinhardt Circle
I. Randleman Road
J. Furnace Road
K. Amity Church Road
Segment 3: Reed Creek to Killian Creek –
OPTION 2: Thruway

A. Amity Church Road
B. Lambs Way
C. Old Plank Road
D. Brevard Place Road
E. Beth Haven Church Road
F. Tyler Hatley Lane
G. Schronce Road
H. Ingleside Farm Road
Segment 4: Killian Creek to Duke Power Lines – OPTION 2: Thruway

A. Ingleside Farm Road
B. Little Egypt Road
C. Railroad
D. Future NC 16
E. NC 16
F. Forest Oak Drive
G. Pilot Knob Road
H. Hagers Ferry Road
I. Killian Farm Road
J. Club Drive
K. Caswell Road
L. Sifford Road
M. Eastlake Lane

1. Ingleside Farm Road to Forest Oak Drive
2. Forest Oak Drive to Hagers Ferry Road
3. Pilot Knob Road to Killian Farm Road
4. Old Plank Road to NC 16 and Sifford Road
5. Sifford Road to Caswell Road
Segment 5: Duke Power Lines to Huntersville Town Limits – OPTION 2: Thruway

A. NC 16
B. Little Egypt Road
C. Pilot Knob Road
D. Sifford Road
E. Killian Farm Road
F. Club Drive
G. Caswell Road
H. Eastlake Lane
I. Duke Power-Cowans Ford Drive
J. Hagers Ferry Road

Map showing the proposed route and traffic estimates.
Segment 6: Huntersville Town Limits to Catawba Avenue – OPTION 2: Thruway

A. Duke Power-Cowans Ford Drive
B. Hagers Ferry Road
C. Beatties Ford Road
D. Gilead Road
E. Oliver Hager Road
F. Babe Stilwell Farm Road
G. David Kenney Farm Road
H. Catawba Avenue
1. Birkdale Commons Parkway
2. NC 73 to Stumptown Road
3. Gilead Road Realignment
4. Oliver Hager to Birkdale Commons Parkway

6-lane highway
4-lane suburban arterial

19,000
21,000
27,500
50,000
27,500
76,000

20,000
15,000
27,500
21,000
27,500

NC 73 Transportation / Land Use Corridor Plan
Segment 7: Catawba Avenue to Ramah Creek – OPTION 2: Thruway

A. Catawba Avenue
B. Westmoreland Road
C. Northcross Drive
D. I-77
E. NC 21
F. Bailey Road
G. Stumptown Road
H. NC 115
I. Railroad
J. Mayes Road
K. McCord Road
L. Ramah Church Road
M. Gilead Road/Huntersville-Concord Road
N. Davidson-Concord Road
1. Bud Henderson Road to Gilead Road
2. NC 73 to Stumptown Road
3. Northcross Drive to Catawba Avenue
4. Westmoreland Road to Bailey Road
5. Stumptown Road to McCord Road
6. Stumptown Road to Ramah Church Road
7. Huntersville-Concord Road to Ramah Church Road
8. Bailey Road to Davidson-Concord Road
Segment 8a: Ramah Creek to West Branch of Rocky River – OPTION 2: Thruway

A. Mayes Road
B. Westmoreland Road
C. McCord Road
D. Black Farms Road
E. Davidson-Concord Road
F. June Washam Road
G. Ramah Church Road
H. Hiwassee Road
I. McAuley Road
J. Stanley McElrath Road/Shiloh Church Road
K. Poplar Tent Church Road

4-lane highway

Traffic Volume:

- Mayes Road: 15,000
- Westmoreland Road: 32,000
- McCord Road: 15,000
- Black Farms Road: 32,000
- Davidson-Concord Road: 16,000
- June Washam Road: 38,000
- Ramah Church Road: 38,000
- Hiwassee Road: 16,000
- McAuley Road: 38,000
- Stanley McElrath Road/Shiloh Church Road: 30,000
- Poplar Tent Church Road: 15,000
Segment 8b: West Branch of Rocky River to Coddle Creek Reservoir – OPTION 2: Thruway

A. Jim Johnson Road
B. Harris Road
C. Odell School Road

NC 73 Transportation / Land Use Corridor Plan

109
Segment 9: Coddle Creek Reservoir to I-85 – OPTION 2: Thruway

A. Harris Road
B. Odell School Road
C. Barr Road
D. Westside Bypass
E. Macedonia Church Road
F. Trinity Church Road
G. I-85
1. Untz Road to Fingerlake Drive
All NC 73 Traffic Goes to Sam Furr Road – Huntersville Options
Area Network – Huntersville Options
Limited Network – Huntersville Options

50,000 Cars per day

30 – 40,000 Cars per day

50,000 Cars per day
Access Management is a strategy that seeks to balance access to land development while simultaneously preserving the safe and efficient flow of traffic on the roadway system. It addresses the basic questions – when and where access should be located and how it should be designed. It is the systematic control of the location, spacing, design, and operation of traffic signals, local street locations, and driveway connections to a roadway. In broad context, it is resource management, since it is a way to anticipate and prevent safety problems and congestion.

Benefits of Access Management
Benefits of the efficient management of roadway access include the following:

* Safety – Access Management contributes to fewer and less severe traffic accidents by requiring longer driveway and median opening spacing thereby reducing conflicts between vehicles and other traffic.
* Efficiency – Access Management contributes to a more efficient traffic circulation system by fewer but better designed access points and, in urban areas, better signal spacing and operation. Stop-and-go traffic is reduced and roadway capacity is increased and preserved.
* Capacity – Effective Access Management can increase the carrying capacity of a roadway by as much as 40%. For NC 73, this can mean that a four lane road may be sufficient, when a six lane road might have been required without Access Management.
* Aesthetics – Landscaping at the margin of the roadway and in the median of divided roadways makes for a more attractive corridor, as well as good visual notification of driveways and median openings.
Access Management Techniques
A variety of access management, location and design practices and techniques can be used to improve the safety and operations of the roadway. The Access Management system for NC 73 Corridor incorporates all of these, to some degree. Access Management techniques can be grouped into six general categories. However, some techniques may fit into more than one category.

A. Limit the Number of Conflict Points: This group of techniques recognizes that drivers make more mistakes and collisions increase when drivers are presented with complex situations. Conversely, simplifying the driving task will contribute to improved traffic operations and fewer collisions. This is accomplished by limiting the number and type of conflicts between vehicles, vehicles and pedestrians, and vehicles and bicycles.

B. Separate Conflict Areas: These access management techniques provide sufficient time for drivers to address one potential conflict problem before facing another. This simplifies the driving task and contributes to improved operations and safety.

C. Remove Turning Vehicles from the Through Traffic Lanes: These techniques reduce the severity and duration of conflicts between turning vehicles and following through vehicles.

D. Reduce the Number of Turning Movements: The provision of cross-circulation between adjacent properties and the provision of service roads allows intersite movement without re-entry to the abutting major roadway.

E. Improve Traffic Operations on the Roadway: This group of techniques is primarily of a policy nature. They are intended to preserve the functional integrity of the roadway. Thus, while a given technique may apply to a range of collector and major roadways, higher standards are commonly applied to the higher categories of roads.

F. Improve Traffic Operations on the Access Intersection: These techniques allow drivers to maneuver to and from the major roadway more efficiently and safely. They also permit the safer accommodation of pedestrians and bicyclists.

Access Location and Design
Access management involves the efficient and safe location, spacing and design of all points of access, be they public roadways or private driveways.

Considerations in establishing access spacing requirements include the following:

A. Signalized Intersection Spacing: Long uniform signalized intersection spacings on major roadways facilitate the use of signal timing plans which can respond to both peak and off-peak traffic conditions. Long and uniform spacings improve the progress of traffic flow through the signal system. Capacity is increased, fuel consumption and emissions are decreased, and traffic safety is improved.

B. Unsignalized Intersection Spacing: The location and design of unsignalized intersections affects the ability of a driver to safely and easily enter and exit a site. If not properly placed, exiting drivers may be unable to see oncoming vehicles and motorists on the roadway may not have adequate time to stop.
The elements of access design include:

A. Nontraversable Medians: Wide nontraversable medians separate opposing through traffic and provide shelter for vehicles making left turns from or to a street. They also provide refuge for pedestrians and bicyclists attempting to cross the street. Consequently, crash rates on major roadways with nontraversable medians have been found to be substantially lower than on undivided roadways or roadways with continuous two-way left-turn lanes. The spacing and design of median openings is important to the safe and efficient operation of the roadway. Safety benefits are reduced where median openings are too close together. In rural areas, median openings commonly will permit all movements. However, when providing a median opening on the fringe of an urban area, it is important to consider the potential for future signalization. A full median opening that is located where signalization will interfere with efficient traffic progression may need to be closed or reconstructed as a directional opening. When development has already occurred and an existing roadway is reconstructed with a nontraversable median, left turns and crossing maneuvers are moved to other locations. Many of these maneuvers may be converted to a right turn followed by a U-turn or a U-turn followed by a right turn. If a nontraversable median exists, or is to be constructed, provisions have to be made to accommodate the redirected left turn. This can be accomplished by either a change in travel patterns or by providing sufficient space to accommodate the U-turn maneuver at a nearby intersection. Directional median openings (i.e. openings that prohibit cross traffic and allow only left turn egress from one or both approaches) are an efficient and safe technique for providing partial access instead of right-in, right-out only.

B. Auxiliary Lanes: Left and right turn lanes minimize the conflict between turning vehicles and following through traffic by providing storage space where drivers can wait to complete the turn maneuver. This will result in smoother traffic flow, increased capacity, and greatly increased safety. Capacity is increased by eliminating excessively long gaps between through vehicles passing through an intersection. From a safety standpoint, it is recommended that separate left turn lanes be provided at all median openings on divided roadways. Research has shown that providing a left turn bay at a signalized intersection reduced the crash rate by 40 to 45 percent and providing a left turn bay at an unsignalized intersection reduced the crash rate by 90 percent. The peak hour volumes per lane in urban areas can approach capacity and even a small number of left-turning vehicles will produce high delays and a high probability of conflicts with following through vehicles. Right turn lanes also increase capacity and safety. However, they frequently require additional right-of-way on the approach to an intersection.

C. Cross and Joint Access: Cross and joint access provides internal circulation between adjacent parcels and consolidates access to serve two properties instead of just one. Cross access allows vehicles to circulate between adjacent businesses without having to re-enter the arterial. This allows intensive development of a corridor, while maintaining traffic operations and safe and convenient access to businesses. Property owners unable to meet driveway spacing standards should, whenever feasible, be required to provide for cross and joint access easements. Flexibility is needed on an administrative level to work with the unique circumstances of each development site.
D. Bypasses: If suitable alignments are available, a bypass route offers the opportunity to obtain wide right-of-way, control access and provide access at locations that enforce efficient traffic operation. The existing roadway and the adjacent land uses would not be disturbed within the limits of a bypass.

E. Secondary Road Systems: A supporting system of roadways with reasonable continuity can accommodate traffic between “local” areas and minimize unnecessary trips on NC 73. This system, or network, can separate local and regional traffic.

F. Frontage Roads: Frontage or service roads provide increased access to developments and protect the main highway from frequent access demands. However, they complicate intersections between the arterial and cross streets and, unless carefully designed and selectively applied in both new designs and in retrofit situations, they may prove counterproductive.

G. Reverse Frontage: An alternate to an adjacent frontage road is a reverse frontage road. This technique locates the frontage, or service road, one land parcel away from the arterial. All land access is provided by the service road. The road can be a separate entity or be part of the local street system. Land uses between the arterial and the “reverse frontage road” can range from residential to office to retail. Where major activity centers front along an arterial roadway, frontage roads should be incorporated into the site’s internal circulation system. Access to the thoroughfare is provided at locations which can be designed to more safely handle traffic.

Access management is primarily a land use and traffic management issue. It calls for land use controls and incentives that are keyed to the development policies of the community and the capabilities of the transportation system. The challenge is not merely how to provide and locate driveways, but how to transform our roadside environments into attractive, accessible and equally viable areas in the years ahead. Significant safety benefits are achievable in access management by implementing criteria related to nontraversable median design and allowable spacing of openings.

Access management is essential if we are to preserve the capacity and safety of our road system and provide efficient access to the properties that lie along it. It is also essential to develop and maintain political support for access management programs. A review of contemporary practice indicates that each setting is different, both physically and politically. Access management standards, therefore, will vary from place to place, with each setting adapting the basic principles to its particular needs.
Access Management Criteria
Access Management is the process of balancing the competing needs of traffic movement and land access. It is the systematic control of the location, spacing, design, and operation of traffic signals, local street locations, and driveway connections to a roadway. It also involves roadway design applications such as median treatments and auxiliary lanes.

A. Access Spacing
Each new access point introduces conflicts and friction into the traffic stream. With more conflicts comes a higher potential for crashes, and the resulting friction translates into longer travel times and greater delay. To address these issues, access management programs establish minimum requirements for access spacing. These requirements should set forth considerations in establishing access spacing criteria and determining the appropriate spacing for the following:
* Signalized access connections and street spacing,
* Unsignalized access connections,
* Corner clearance, and
* Median opening spacing.

1. Traffic Signal Spacing
Select a long uniform signal spacing interval and a procedure for deviating from the established interval when necessary or appropriate. A long, uniform signal spacing will allow for efficient traffic progression with a combination of cycle lengths and progression speeds to accommodate peak and off-peak traffic conditions and increases in traffic volume over time. Recommended traffic signal spacing for the NC 73 Corridor is as follows:
* Principal Arterial 2640 feet
* Minor Arterial-Rural 2640 feet
* Minor Arterial-Urban 1320 feet
* Collector 1320 feet

Segment plans for the NC Route 73 Corridor indicate both existing and potential traffic signal locations in the corridor. The remaining public or private points of access are recommended to remain unsignalized.

The variables involved in the planning, design and operation of signalized arterial roadways are reflected in the relationship between speed, cycle length and signal spacing. The objective is to balance these three elements to yield maximum progression bandwidths in both travel directions. Table A-1 (Spacing as a Function of Speeds and Cycle Lengths) and

<table>
<thead>
<tr>
<th>Cycle Length (sec.)</th>
<th>Speed (mph)</th>
<th>Signal Spacing in Feet<sup>11</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>60</td>
<td>1100</td>
<td>1320</td>
</tr>
<tr>
<td>70</td>
<td>1280</td>
<td>1540</td>
</tr>
<tr>
<td>80</td>
<td>1470</td>
<td>1760</td>
</tr>
<tr>
<td>90</td>
<td>1630</td>
<td>1980</td>
</tr>
<tr>
<td>120</td>
<td>2200</td>
<td>2640</td>
</tr>
<tr>
<td>150</td>
<td>2750</td>
<td>3300</td>
</tr>
</tbody>
</table>

¹¹Distances rounded to nearest 10 ft.
A-2 (Progression Speed as a Function of Signal Spacing and Cycle Length) indicate optimal traffic progression efficiency.

When a signalized intersection deviates from the selected uniform interval, an increase in the percentage of the cycle length devoted to the major arterial – with a comparable decrease in green time for the intersecting street – can preserve progression efficiency. With short cycle lengths (i.e., 60 seconds), each one percent deviation in intersection spacing requires an increase in green time for the major street of one percent of the cycle length to maintain progression, and a decrease in green time for the minor street of one percent. However, at long cycles (120 seconds) green to the major street, and red to the minor street, must be increased by two percent of the cycle length for each one percent deviation. This becomes a critical issue when considering arterial-to-arterial street spacing.

The deviations procedures should include the following criteria: 1) Identification of the segment length to be used in the analysis together with the location of existing and future signal locations; such identification to be made by the agency having jurisdiction for the roadway on a case-by-case basis, 2) The combinations of spacing, progression speed, cycle lengths, and minimum progression band widths to be obtained for various weekday and weekend peak and off-peak periods, 3) The analysis procedures/model to be used, and 4) Qualifications of the person performing the analysis.

2. Unsignalized Access Connection Spacing
Access connection spacing standards establish the minimum distance between public streets or private driveways along major thoroughfares. These standards help to reduce the potential for collisions, as travelers enter or exit the roadway. They also encourage the sharing of access for small parcels, and can improve community character by reducing the number of driveways and providing more area for pedestrians and landscaping. The location of driveways affects the ability of drivers to safely enter or exit a site. Driveway design standards assure that driveways have an adequate design so vehicles can safely and efficiently enter and leave a site.

Access connections should be spaced such that their functional areas do not overlap so that they operate independently of each other. At a minimum this distance will consist of the distance traveled during a perception-reaction time plus the deceleration-distance plus any queue storage.

<table>
<thead>
<tr>
<th>Table A-2</th>
<th>Progression Speed in mph as a Function of Signal Spacing and Cycle Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Length (sec.)</td>
<td>Spacing in Miles (feet)</td>
</tr>
<tr>
<td></td>
<td>One Eighth (660 ft.)</td>
</tr>
<tr>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>70</td>
<td>13</td>
</tr>
<tr>
<td>80</td>
<td>11</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>8</td>
</tr>
<tr>
<td>120</td>
<td>7.5</td>
</tr>
</tbody>
</table>
The spacing on a major thoroughfare should be at least twice the deceleration distance. This will allow for right-turn deceleration lanes with normal pavement edge along at least 50% of the roadway segment. Where development had already occurred and reasonable alternative access is not available or cannot be provided, a continuous right-turn lane may be appropriate.

The selection and application of access spacing criteria should consider the following:

* Higher standards should apply to higher class roadways;
* Higher classification of roadways typically have higher speeds than roadways of a lower classification;
* Higher classification of roadways tend to carry higher volumes than roadways of lower classification;
* Spacings for suburban/urban roadways should be based on off-peak period speed;
* The interference to through traffic increases as volume increases. A very small number of turning vehicles interfere with a very large number of through vehicles on high-speed, high-volume suburban/urban roadways – especially during peak periods. A single vehicle turning from a through lane will totally disrupt platooned flow and traffic progression; and
* Roadways with speeds ≥ 45 mph are typically more critical than those with speeds ≤ 40 mph.

Suggested guidelines for unsignalized access spacing is as follows:

<table>
<thead>
<tr>
<th>Table A-3</th>
<th>Suggested Guidelines for Access Spacing on Rural Roads, Spacing in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Divided Roadway</td>
</tr>
<tr>
<td></td>
<td>All Movements</td>
</tr>
<tr>
<td>Functional Class of Roadway</td>
<td>Undivided Roadway</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>2640</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>1500</td>
</tr>
<tr>
<td>Collector</td>
<td>660</td>
</tr>
<tr>
<td>Local Road</td>
<td>600</td>
</tr>
</tbody>
</table>

(1) Typically designed for left-turns from the major roadway or left-turns and u-turns.

<table>
<thead>
<tr>
<th>Table A-4</th>
<th>Suggested Guidelines for Access Spacing on Suburban Roads, Spacing in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Divided Roadway</td>
</tr>
<tr>
<td></td>
<td>All Movements</td>
</tr>
<tr>
<td>Functional Class of Roadway</td>
<td>Undivided Roadway</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>2640</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>990</td>
</tr>
<tr>
<td>Collector</td>
<td>330</td>
</tr>
<tr>
<td>Local Road</td>
<td>100</td>
</tr>
</tbody>
</table>

(1) Typically designed for left-turns from the major roadway or left-turns and u-turns.
3. Corner Clearance
Setting driveways and connections away from intersections reduces the number of conflicts and provides more time and space for vehicles to turn or merge safely across lanes. This spacing between intersections and driveways is known as corner clearance which is a special case of access spacing. Adequate corner clearance can also be assured by establishing a larger minimum lot size for corner lots. The permitting agency may include conditions on the access connection permit in terms of volume (vehicles per hour and/or vehicles per day), type of vehicle, and movement (i.e., right-in/right-out only). In addition to these conditions, municipalities and counties can regulate the type and intensity of land use per se (e.g., residential, neighborhood commercial, general commercial, etc.). Additionally, local governments may adopt site plan approval and development requirements. This can be used to regulate building location, on-site circulation and parking – in addition to access location and design – in order to minimize problems at corner properties.

Local ordinances and NCDOT Administrative Rule should specify: 1) “Subdivision of a parcel shall not result in a justification for additional direct access. The subdivision shall provide a circulation system that provides direct access to the various parcels created by the subdivision”, 2) “Parcels under single ownership shall be considered a single property for the purpose of access”, and 3) “Parcels under separate ownership assembled for a unified development shall be considered as a single property for the purposes of access.”

From a planning perspective, two actions should be encouraged; both require a proactive approach to corner clearances:
* Establishing the desirable location of access points before property is subdivided or developed, and
* Establishing minimum requirements for property frontages in zoning and subdivision regulations.

The following principles should guide corner clearance and driveway planning:
* Ideally, no driveways to corner properties should be permitted off of major highways. This requires safe and convenient alternative access and reasonable internal site circulation. Access to corner properties at the intersection of a major roadway and a minor roadway should be permitted to the minor crossroad only.
Intersection corner clearance indicated in Figure A-1.

<table>
<thead>
<tr>
<th>Clearance</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Upstream on the major roadway</td>
<td>Distance traveled during perception-reaction time, plus deceleration/\</td>
</tr>
<tr>
<td></td>
<td>maneuver distance, plus queue storage.</td>
</tr>
<tr>
<td>B – Downstream on the major roadway</td>
<td>Separation of the intersection from entering and exiting maneuvers at a drive</td>
</tr>
<tr>
<td></td>
<td>way. Separation should equal or exceed the upstream functional dimensions of</td>
</tr>
<tr>
<td></td>
<td>driveway. Absolute minimum separation should not be less than the stopping</td>
</tr>
<tr>
<td></td>
<td>sight distance.</td>
</tr>
<tr>
<td>C – Approach side on the minor roadway</td>
<td>Queuing.</td>
</tr>
<tr>
<td>D – Departure side on the minor roadway</td>
<td>Separation of the intersection from entering and exiting maneuvers at the</td>
</tr>
<tr>
<td></td>
<td>driveway. (Figure A-2)</td>
</tr>
</tbody>
</table>

Intersection Corner Clearance

Source: *Transportation and Land Development, 2002* [2]
Figure A-1
Figure A-2 illustrates the affect of intersection channelization on corner clearance.

4. Median Opening Spacing
In rural areas, full median openings (an opening that permits all movements – crossing left-turns from the roadway and left-turns onto the roadway) are commonly permitted. However, when providing a median opening in the NC 73 Corridor, it is important to consider the potential for future signalization. A full median opening that is located where signalization will interfere with efficient traffic progression may need to be closed or reconstructed as a directional opening. The Colorado Access Code addresses the issue of median openings on major roadways as follows: “The standard for the spacing of all intersecting public ways and other accesses that will be full movement are, or may become, signalized, is one-half mile intervals …”

Directional median openings that allow specific movements only have fewer conflict points than full median openings and are safer. Replacing full median openings with directional openings has been found to substantially reduce crash rates and to be acceptable to stakeholder groups [3]. The policy of the Florida Department of Transportation is for all unsignalized median openings to be for left-turn/U-turns. Existing full median openings are converted to left-turn/U-turns. Existing full median openings are converted to left-turn/U-turn during reconstruction projects, as well as resurfacing projects where possible.

Minimum Corner Clearance on the Minor Roadway

Figure A-2